If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)=-16H^2+265
We move all terms to the left:
(3)-(-16H^2+265)=0
We get rid of parentheses
16H^2-265+3=0
We add all the numbers together, and all the variables
16H^2-262=0
a = 16; b = 0; c = -262;
Δ = b2-4ac
Δ = 02-4·16·(-262)
Δ = 16768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16768}=\sqrt{64*262}=\sqrt{64}*\sqrt{262}=8\sqrt{262}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{262}}{2*16}=\frac{0-8\sqrt{262}}{32} =-\frac{8\sqrt{262}}{32} =-\frac{\sqrt{262}}{4} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{262}}{2*16}=\frac{0+8\sqrt{262}}{32} =\frac{8\sqrt{262}}{32} =\frac{\sqrt{262}}{4} $
| (0.4902+0.9662+0.9128+0.9566+0.9686+0.9546+0.9385+3x)/10=0.9 | | 33=x-6 | | v/5+12=26 | | (0.4902+0.9662+8x)/10=0.9 | | x+9=59 | | (0.4902+9x)/10=0.9 | | (0.4914+0.9593+0.9772+0.9950+0.9711+0.9263+0.9356+0.9374+2x)/10=0.9 | | (0.4914+0.9593+0.9772+0.9950+0.9711+5x)/10=0.9 | | 1/4(x-1)=3x=2 | | 9x-4=-50 | | 71+8x+45=189 | | 4x-9+5x=4x+x | | -3(5s-2)-6=-2(9s+2)-3 | | 22+3/4x=x3/4 | | y^2+28y+26=0 | | 30x+4+82=180 | | 19=9u-u | | w=6w=49 | | (0.9491+0.4952+0.9537+0.9987+0.9726+0.9778+0.9458+0.9634+2x)/10=0.9 | | 6a+4a+17a=81 | | 6a=4a=17a=81 | | 4*x=76 | | l-97.5=195 | | 3s-s=1295 | | L=3s+L-s=195 | | 7r+20=195 | | Y=3x+42 | | 72/2c=3 | | (0.9602+0.9743+0.9602+0.9895+0.9676+0.4914+0.9428+3x)/10=0.9 | | -7v-9=2(v-9) | | (0.9602+0.9743+0.9602+0.9676+0.4914+0.9428+4x)/10=0.9 | | (0.9602+0.9743+0.9602+0.9676+0.4914+0.9428+5x)/10=0.9 |